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At present there are quite a large number of papers devoted to various 
aspects of the problem of the magnetohydrodynamic boundary layer, The 
formulation of the problem of the magnetohydrodynamic boundary layer, 
for the case of small magnetic Reynolds numbers (.R,), can be found in 
[l], for the case of large R, in [2-31. In the course of development of 

these papers classes of solutions of the respective problems were in- 
vestigated, and particular problems were solved. In the present paper, a 
systematic presentation is made of considerations and relationships con- 
cerning the formulation of the problem, (some of which are contained in 
one form or another in earlier papers). These considerations may be found 
useful in various complex cases arising in the formulation of the prob- 
lem. In the interest of simplification, we shall consider only the bound- 
ary layer in an incompressible fluid. 

Let us assume that, under the influence of either viscous or electro- 
magnetic forces, or under the influence of both of these forces, a 
narrow region of flow develops in a stream, namely the boundary layer, 
in which the usual boundary layer assumptions for the velocity components 
are valid. Let 6 be the thickness of that boundary layer, where F/L << 1, 
L being a characteristic length along the boundary layer. 

ff in the boundary layer under consideration viscous forces are 

appreciable, i.e. if the boundary layer is “viscous”, then we obtain 
from the comparison of viscous and inertial terms in the equations of 
motion bau/ax - va2 u/ay’) for the thickness of the boundary layer 

Here and subsequently x and z denote the streamwise and normal 
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coordinates within the boundary layer. Projections of vectors on the 
plane xz have the index T, y is the coordinate across the layer. Fro- 
jections of vectors on this axis in some instances are indexed n. If 
R,&l., then the layer will not be viscous (6 <c SJ. In the eases where 
the magnetic Reynolds number is 

there may develop a ‘“magnetic” boundary layer in the stream f.Z-31, i.e. 

a narrow layer, in which the magnetic field and tJx flow field of the 
electric current change sharply. If we define the thickness of the magnetic 
boundary layer, 6. as the distance, over which sharp variations of the 
n*rgnetic field an d the field of currents across the boundary layer take 
place, then by equating terms of equal order of magnitude in the induction 

equation 

rot(vxB)+v,~H=(H~‘C7)v-(v.V)H+~m/gb=O 

we obtain 

If Rng >> L/6, the fl ow inside the boundary layer is described by the 

equations of magnetohydrodynamics for u = ~0. It is assumed that dissoci- 
ation, as a consequence of electric currents, does not take place. Sur- 
face currents may also be encountered. ‘Ihe thickness of the Sunday 
layer in this case is not related to the magnetic Reynolds number, but it 
is determined by some other factors, for example, by viscous forces. 

‘Ihe relative thickness of the viscous and the magnetic layers is de- 
termined for R, >> 1 by the parameter 14-S) 

For E * 1 the thicknesses of the viscous and the magnetic layers are 

comparable (6 % 6, 5 ~5~1. lhis case is investigated in [$I. For E << 1 

(6 ‘u 6 ., 6, << 6 .) the-b oundary layer will be a magnetic layer in an 

ideal fluid (see: for example, [31>. 

In this case there may exist in the ~undary layer surfaces of velo- 
city discontinuity corresponding to the viscous sublayer. Flow in a 
viscous boundary layer (sublayer) for E << 1 depends upon the magnetic 
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Reynolds number, calculated from S,. For E >> l(6 * 6,, Ej << SJ the 
layer under consideration will be viscous. In this case a magnetic sub- 
layer may turn out to be a surface current, while the flow in the bound- 
ary layer must be treated on the basis of the magnetohydrodynamic equa- 
tions for u = m. In all these cases (RIIL >> 1) the widest portion of the 
stream, located outside the boundary Iayer, is described by the equations 
of magnetohydrodynamics for a = m. Some approximate solutions of the 
boundary layer problems for E >> 1 and E << 1 are given in [4-51. 

If the parameters which define the problem are such that R,<l, then 
R,g << 1. If strong outside electric fields are also absent (E<UH/c), 
then by comparing the terms in Ohm’s law 

-&-rotH=o(E+$xH) 

the distance S* may be evaluated, in which the magnetic field changes 

appreciably. In the general case 

where the sign of the inequality corresponds to the case Rd* > 1. In 
the case of a small magnetic Reynolds number 

and the evaluation of the magnitude of 6* yields 

L 
R 

L 6 
p” mL= Rrn6-g-s for p--Rma<l 

be 
in 

(E 

Hence it follows that the boundary layer under consideration will not 
a current layer, because 6* >> 6. ‘lhe thickness of the boundary layer 
this case is determined by viscous forces and 6 -L/J R,_. 

Note: If strong electrical fields are created by external agencies 

>> W/c) * the hydrodynamic problem is simplified. because the electro- 
magnetic force in this case is defined only by the “external” electric 

field and by the currents produced by it. Consequently, the electro- 

magnetic force is a given quantity, since the distribution of the ex- 

ternal fields and currents may be determined independently. 

From the evaluations, given below (61 to (71, it will be seen that 
the convection currents (p,v) may be neglected in Ohm’s law. We shall 
merely note, that these currents may not lead to an appreciable change 
of the magnetic field in the boundary layer, since, when comparing the 
terms c/4r rot II and p,v (expression for pe see below (111, we find that 
s/s* w u2/c2. 
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Hence, for R&G1 the currents which flow in the boundary layer are 
small, so that they will not lead to an appreciable change of the mag- 
netic field. ‘Ihe magnitude of the magnetic field is determined from the 
solution of the problem outside of the boundary layer. (If the boundary 
layer is assumed to occur on a body, then the free stream problem com- 
prises the solutions of the problems of flow of an ideal fluid past an 
immersed body and the problem of finding the field inside the body.) If 
R, << 1, then the magnetic field in the entire stream may be considered 
to be a given quantity (in the problem of flow past an inxnersed body it 
is determined by the currents flowing in the itnnersed body). The formula- 
tion of such a problem, in the particular case where a magnetic field is 
given, is presented in 111 . If R, * 1, then the equations of magneto- 
hydrodynamics must be solved in the stream outside of the boundary layer 
and the solution for the magnetic field must be matched (in the case of 
flow past an inrnersed body) with the solution for the distribution of the 
magnetic field in the body. 

The influence of the electromagnetic field on the flow in a boundary 

layer in the case R &~l is signified by the presence of the electro- 
magnetic force 

f =peE++jxH =p,E+$(E+ T)xH 

where in the case of flow in a boundary layer gi is a given quantity which 

depends on the coordinates within the boundary layer, Consequently, in 
order to solve the problem of a boundary layer for R,,(l, it is neces- 
sary either to know the distribution of the volume charge pe and of the 
electric field E inside the boundary layer, or else to include equations 
by which these quantities may be determined. By applying the operation 

div to Ohm’s law, we obtain the distribution of the volume charge 

&rp, = div E = - ddiv(vxH) = -_(Hrotv--vrotH) (4) 

The electric field is described by the Maxwell equations 

rot E = 0, div E = 4np, (2) 

and it depends in general upon the distribution of the charge density in 
the boundary layer, in the free-stream and, in the case of flow about a 

body, in the body. 

In the case investigated in fl] of plane flow, with H = const and 
directed in the plane of flow and p, E 0 in the free-stream as well as 
in the boundary layer. Also E z 0 in the whole stream and the electro- 
magnetic force is defined only by the velocity field and the magnetic 
field. 
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If R, << 1, then the magnetic field is determined by the currents 
which flow outside the region of flow and, consequently, in the boundary 
layer and in the free stream rot H = 0. It is to be noted that condition 
H = 0 in this case does not imply that the current density is zero. 

If R, -1, then rotB#O and in the boundary layer 

rot H = ‘?[E + +vx H] 

F3y evaluation in the boundary layer and by using the fact that in the 
boundary layer ?H/ay = 0, we obtain for the charge density: 

(3) 
&o 

z 5 1 vT x H, 1 + Ii, rotn v - q (v, . J-3,) x + 0 (61, 
i for I?,,--1 

x = 0 for R,,-@l 

Ilence it follows that the charge density in the boundary layer 

(4) 

(5) 

If we consider the boundary layer on the immersed body, then on the 

body fv, x \I = 0, because vT = 0. Consequently, Equation (4) corre- 
sponds to the case 1~~ x &I, # 0, and (5) corresponds to the case 

Ivr x qta, = 0. 

We shall show that in spite of the presence of the charge density in- 
side the boundary layer, we may neglect the “electric” force p,E in all 
cases of practical importance. Indeed when comparing terms p,E and 
(u/c)E x H in the force expression, we obtain 

(6) 

JP,EI+Ex HI for 

(7) 

Inequality (6) is always considered to be valid, because it is pre- 
dicated upon the neglect of the displacement currents [6]. Inequality 
(7) may be violated for R,&l, if the viscosity is very small 
6 +., U2L/c2 * But in this case the boundary layer does not really exist 
since it is transformed into a charged vorticity layer in an ideal fluid. 
If a viscous boundary layer exists, inequalit 

1 in the case of very small R,(R, * U2J (RJc 
(7) may be violated only 

f). In this case, by com- 
paring the magnetic with viscous forces in the equations of motion, it is 
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found that the electromagnetic forces will exert an influence upon the 
flow in the viscous bonndary layer, if 

i.e. in the case of exceedingly large magnetic fields. Let it be noted 
that Equation (8) may be obtained by relating the electric force peE to 
the viscous forces, if the evaluations (41, (5) and the relation E&Ufi/c 
are used. 

In this manner, the electromagnetic force for the flow in a. boundary 

layer is 

f =+(E+$-~H)~H 

When comparing the electromagnetic force (9) with the inertia forces, 
it is found that the electromagnetic forces exert an influence upon the 
flow in the boundary layer for R,gl, if [l] 

Instead of this parameter a parameter may be used which arises from 
the ratio of the viscous and the electromagnetic forces 

ML= 
-N 

RL 
1, M=Ji-&m (I is the Hartman number) (10) 

Relationship (10) shows that in the case of small Hartman numbers 
(M << dRL) th e electromagnetic forces do not influence the flow in the 
boundary layer. 

HenW?, to sotve the problem of the boundary lager an additional force 

must be introduced into the equation of the boundary layer, which is de- 
termined by Equation (9) and in addition also by Equation (2). But since 
the electric field in the boundary layer depends upon the external charge 
distribution. and the boundary conditions for the solution of the ex- 
ternal problem depend upon the charge concentrated in the boundary layer, 
the equations of the boundary layer and the free stream in general may 
not be solved independently. On the basis of certain considerations and 

the investigationa developed below. it is possible, however, first to 
simplify Equation (2) within the limits of the system of boundary laser 
equations and. second. to formulate the boundary conditions for the ex- 
ternal problem so that it would be possible to solve the external prob- 
lem and the boundary layer equations separately. 

In setting up the equations of motion in the boundary layer it is 
necessary to take into account only the main (in terms of 61 terms in 
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the Jkpression (9). Therefore, if any quantity in (9) is of order of 

magnitude S in the boundary layer, then the terms which contain this 

quantity may be neglected. On the other hand, if any quantity undergoes 
a variation of the order of 6 inside the boundary layer, then the value 
of this quantity must appear in (9) as obtained from the solution of the 
external problem while disregarding the boundary layer. 

‘Ihe quantity H in (9) is calculated from the solution of the external 
problem. For R,gl it does not depend on the flow in the boundary 
layer, therefore H must be assumed to be of the order of 1 (with respect 
to 6) for the flow in the boundary layer. Since in the boundary layer 
u ti w - 1 and v Q 6, the expression uer + waz is to be substituted for 
the velocity in (9). 

Let the principal part of the electric field which is used for cal- 
culating the forces in the boundary by Equation (9) be denoted by E”. 
The expression for the force in the boundary layer equations in this 
case has the form 

f =$(E”+ue,+we,)xH (11) 

‘Ihe electric field in the boundary layer is determined by the solu- 

tion of the external problem and the distribution of charge inside the 

boundary layer. If alv, x %I/?.Y = 0, then because of (5) the order of 

P, * 1 and the summed charge of the boundary layer will be a quantity of 
the order of 6. Evidently, the variation of the electric field produced 
by the external sources on account of the charge concentrated inside the 
boundary layer, will be of the order of 6. Consequently, for afv, x I$// 
3~ = 0 the electric field E” in (11) must be regarded to be the field 
produced externally in relation to factors residing in the boundary 
layer while in solving the external problem E” is to be taken as a con- 
tinuous function at the location of the boundary layer. Therefore, if 

alv, x %\/a~ = 0, then in the solution of the boundary layer problem E” 
in Expression (11) will b e a known function which is dependent only on 
the coordinate along the boundary layer and is determined by the solu- 
tion of the external problem. 

In the case of the boundary layer along a body the matter under con- 
sideration corresponds to the condition Iv7 x IfTlco = 0. In this case if 
the imnersed body is a dielectric, j, = Eno = 0, must be taken as the 
boundary condition on the body for the external problem. But if the body 
is a conductor the condition is q” = 0. 

If a/vv x ii,/fiy # 0 then, as a consequence of (41, pe * S-’ and the 
total charge of the boundary layer is of the order 1. Also, the charge 
concentrated in the boundary layer influences materially the external 
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electric field and the variation of the electric field inside the bound- 

ary layer may be a quantity of the order of I. instantly, Eo in (111 
will be a function of the coordinates inside the boundary layer, and to 
render this problem complete in this case, Equation (2) is to be added 
to the boundary layer equations. Using the values pertaining to the 
boundary layer, the system (2) is simplified by retaining only the main 
terms (E*) in it. 

Since the boundary layer is a narrow charged layer, the coolest of 
the gradient of the electric field Al?,, normal to the 
is of the order 

The tangent c~ponent of the electric field is 

Consequently, in the calculation of the principal part of the electric 

field E O, instead of the second Feation (21, we may use the equation 

In analogous evaluations of the equation rot E” = 0, it is found that 

the variation of the tangent c~nent of the electric field /A&] across 
the boundary layer is of the order of S 

layer in this case 

~nseque~tly, in making calculations of the force (11) instead of the 
first Equation (2) the following equation may be used 

aE”, I 8~ = 0 031 

Equations (12), and (13) have a simple physical meaning, namely of the 
continuity of the tangent component and of the variation of the normal 
c~one~t of the electric field pro~r~iona~ to the charge density at 
the transition through the narrow charged layer. By integration of (121, 
we obtain 

and, using Ohm’s law 

iv” ==G E,“++ ( 1 Vt x 1% f ) = af (2, 2) 
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The last relationship shows that in the boundary layer equation 
aj,,O/% = 0 is valid. This permits the bonndary conditions for the ex- 
ternal probiem to be formulated not in terms of the electric field, but 
in terms of the charge density. Hence it follows, that for the determina- 
tion of EOin this case (afvv x Hvf/$y if 0) the external problem must be 
solved with the ass~ption that at the points which correspond to the 
boundary layer there is a layer, the surface charge of which has the 

density 

In the case of the boundary layer on a body, this corresponds to the 
condition vv x t&l, # 0. If the immersed body is dielectric, then the t 
condition jyo = uf(x, zl = 0 serves as a boundary condition on the body 

for the solution of the external problem. If the immersed body is a con- 
ductor, then the outside problem must be solved using the condition 
I$* = 0 on the surface of the body while the function f(z, zl = o-“j, 
for y = 0 is defined in this case by the solution of this problem. 

If afvv x yl/a, = 0, then Equations (12) and (13) express the fact 
that E” is not changed in the boundary layer, that is, in order to solve 
for E’ in Fquation (11) the external problem must be solved in this case 
as already shown above, assuming that the charge concentrated in the 
boundary layer is zero. In 181 which was published very recently, analo- 
gous derivations were obtained for the boundary layer problem in a medium 
with anisotropic conductivity. 

Let it be noted once more that the given considerations refer not to 
the calculation of the distribution of the electric field in the bound- 
ary layer, but only to the calculation of its principal part, which is 
required for the determination of the force in the boundary layer equa- 
tions. 

Projection of the rn~ent~ equation on the normal to the boundary 

layer y yields 

i.e. the variation of the pressure (Apl across the boundary layer is 

and we may use equation a,/&, = 0 when solving the problem of the bound- 

ary layer. 

Summing up the considerations above we write the system of equations 
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which describe the flow (velocity field) in the boundary fayer for the 
case R&?q 

du au 
uz -f-v ~~~~-~~~=-~~+$(E~$.$v’xH)~III, 

ap -0 
d!,- 

aw 
%G ‘a% aW +u-&%$+ =++ $(E”+; v,~fl)xH(, (15) 

$+%+$+o 

-) 0 
63% = -~v+&+f(~, z>, E~=E,*(x, z>, HI = H(x, z> 

Rmctions fix, z), I$oCz, z), H(x, t.1 are determined from the boundary 
conditicns and from the solution of the external probl,l. 

Xn the case R, << 1 the external problem for the boundary layer on a 
body reduces to the equations 

dv 
crt = -gradp +~(E+$vxH)xH, divv = 0 

rot E = 0, div E = --$div (vx 3191) (es) 

with the boundary conditions fur y = 0 

H in the given systrtm is detennined’fram the independent system 

rat, H = -$ j*, div H = 0 03 

where j* is the current density outside the 

The distribution of an electric field in 
equations 

rot E = 0, div E 

where pe* is the charge density in the body 
boundary condition for the solution of this 

region of flow, 

the body is found from the 

I = k&p; 

tin a conductor p, = 0). The 
system is represented by the 
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value of E on the body obtained from the solution of the system (16). ‘lbe 

quantity derived from that equation defines the surface density of 

electric charge En which forms on the surface of the imnersed body, be- 

cause in the solution of the boundary layer problem on a dielectric 

E “1 = E “1 0, and on a conductor E “1 

f~r,Yz~ois d~fi~~“b~ the solution of system ?16!.=’ 
= f(x, 21, where 

In the case fid * 1 the external boundary layer problem on the body 

is reduced to the equations: 

in the region of flow 

dv 
Pz =-gradp+4+(rot HxH), div v = 0 

rot (vLx H) + v,AH = 0, E=+(v,rotH-vxH) 
(W 

outside the region of flow 

rot H = $ j*, div H = 0, rot E = 0, 

If the invnersed body is a dielectric, then 

div E = 4~~pz (19) 

zln = 0, rot,, H =O for y=O 

and the solutions of the systems (18) and (19) must be harmonized for 

Y = 0 (at the points that correspond to the boundary layer) with the 

conditions of continuity of the functions E, and H. 

If the immersed body is a conductor, then 

i.?, = 0, E, =O for y--.0 

and the solutions of systems (18) and (19) must be harmonized for y = 0 

by the conditions of continuity of the functions q, 8, rot 8. 

!&me of the partial solutions of the boundary layer problem on an 

electrode are contained in [71. By the use of certain additional assump- 

tions these solutions may be considered to represent the solutions of 
the system (15) and (16) to (17). 

The solution of the system (15) defines the velocity field in the 

boundary layer. In order to determine the current field in the boundary 
layer from C&m’s law 

j=o(E + $vxII) (20) 
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besides the solution of (15) the distribution of E in the boundary layer 
must be known. 

In first approximation, 
fined by the equation 

as shown above, the current density may be de- 

where E” is determined from l!quations (121 and (13). If more detailed in- 
formation on current distribution in the boundary layer is desired, terms 
of the order in Fquation (20) must be taken into account. Hence, to find 
the velocity, the complete solution of the system (15) is required by 
taking into account the normal component of the velocity. For the deter- 
mination of E the system of equations is to be utilized which permits 
calculating E to terms of the order of 6. 

Such a system may be obtained from (2) and (3) by making correspond- 

ing evaluations. Let us represent E in the form of a sum E = E” + E’. 
From the foregoing considerations it follows that Else. Substituting 
E =EOiE' in the system (2) and evaluating the order of the derivatives, 
we obtain for E'the system (12) and (13) and for E’ the following equa- 
tions: 

Arbitrary functions arising from the integration of (21) or (22) must 
be determined from the solution of the external problem of the electric 
field; also the charge density in the external region must vanish (the 
external charge having been accounted for in the determination of E"). 

Let us illustrate the above by a very simple example which has a 
trivial solution. Consider the flow of an ideal fluid past a flat di- 
electric plate. Let R, << 1 and let the magnetic field, which is deter- 
mined only by external sources, be homogeneous and directed along the 
axis t - fI = Hoes. External electric fields are absent. It is easy to 
prove that the following solution 

2.z = 27, v = 0, w = 0, j = 0, Eg = c-WH, (23) 
E, = 0, E: = 0, pe = 0, p = coast in the strewn E E 0 in the body 
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satisfies the system (16). ‘Ibis solution describes a translational flow, 
in which electric currents are absent. A surface charge is formed on the 
plate of the density (1/4rrc)uH,, which establishes an electric field in 
the external stream, balancing the inductive field. 

We shall look for the solution of the boundary layer problem such that 
UJ = 0, $‘?z = 0, EZ = 0. In this case the exact equations (1) and (2) have 
the form 

and their solution, with consideration of the equation div v = 0, has the 

form 

where j = 0 in the boundary layer, hence the layer will be viscous. The 
solution of Equations (12) and (13) on account of (23) is 

Hence it follows that the electromagnetic force in (15) is zero 

i.e. the solution of system (15) 1 k i ewise describes the usual viscous 
boundary layer. lhis example shows the relation between the solutions of 
system (15) with the solutions of the boundary layer equation and the 
exact solutions of (1) and (2). ‘Ih e solutions of systems (12) to (13) 
are sufficient for the calculation of the velocity field in the boundary 
layer. Equations (12) to (13) are simpler than Equations (1) to (2) and 
their use permits separation of the boundary layer problem from the ex- 
ternal problem. Solutions of system (15) do not differ in the principal 
terms (in terms of 6) for the velocity field from the solutions of the 
boundary layer equations by the use of the exact equations (1) and (2). 

Solutions of Equations (12) to (13) 1 a one are not sufficient for the 
determination of the current field. Indeed, from (25) there follows 

ix = + Hov, jv = 0 

which does not agree with j = 0, which is given by the exact equations 
(1) to (2) and by Ohm’s law. ‘lhis is related to the fact that in the 
determination of E" from (12) to (13) terms of order 6 are not taken 
into account, while they are taken into account in the calculation of 
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the velocity. In order to calculate E correctly to terms of the order 6, 
system (22) is to be used. In the case of the example under considera- 
tion, because of (231 and (251 the solution of (22) has the form 

i.e. solution (22) yields a result which agrees with (24). 

In conclusion let it be noted that analogous results may be obtained 
also in the case of various elaborations of the problem pertaining 
particularly to Ohm’s law, if the evaluations of-the 
are not changed. 
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